Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models.
نویسندگان
چکیده
Pressure sores affecting muscles are severe injuries associated with ischemia, impaired metabolic activity, excessive tissue deformation, and insufficient lymph drainage caused by prolonged and intensive mechanical loads. We hypothesize that mechanical properties of muscle tissue change as a result of exposure to prolonged and intensive loads. Such changes may affect the distribution of stresses in soft tissues under bony prominences and potentially expose additional uninjured regions of muscle tissue to intensified stresses. In this study, we characterized changes in tangent elastic moduli and strain energy densities of rat gracilis muscles exposed to pressure in vivo (11.5, 35, or 70 kPa for 2, 4, or 6 h) and incorporated the abnormal properties that were measured in finite element models of the head, shoulders, pelvis, and heels of a recumbent patient. Using in vitro uniaxial tension testing, we found that tangent elastic moduli of muscles exposed to 35 and 70 kPa were 1.6-fold those of controls (P < 0.05, for strains /=5%). Histological (phosphotungstic acid hematoxylin) evaluation showed that this stiffening accompanied extensive necrotic damage. Incorporating these effects into the finite element models, we were able to show that the increased muscle stiffness in widening regions results in elevated tissue stresses that exacerbate the potential for tissue necrosis. Interfacial pressures could not predict deep muscle (e.g., longissimus or gluteus) stresses and injuring conditions. We conclude that information on internal muscle stresses is required to establish new criteria for pressure sore prevention.
منابع مشابه
Studying the Mechanical Behavior of Tissue in the Generation of Pressure Sores using Simulation and a Guinea Pig Experimental Model
Introduction: Pressure sores refer to lesions that are produced while a constant pressure causes necrotic tissue to grow. The need for a better comprehension of the process has led researchers to artificial generation of pressure sores. Modeling the mechanical behavior of tissue will provide a better understanding of this process as well as a more suitable selection ...
متن کاملMechanically Induced Damage in Tissue Engineered Skeletal Muscle
INTRODUCTION Engineered tissues offer strong possibilities as model systems for studying tissue responses to physical, chemical or biological stimuli. Moreover, they can be used to investigate specific pathologies or clinical treatments with less ethical considerations and better experimental control than animal models or human studies. We use the concept of tissue engineering to design in-vitr...
متن کاملRole of ischemia and deformation in the onset of compression-induced deep tissue injury: MRI-based studies in a rat model.
A rat model was used to distinguish between the different factors that contribute to muscle tissue damage related to deep pressure ulcers that develop after compressive loading. The separate and combined effects of ischemia and deformation were studied. Loading was applied to the hindlimb of rats for 2 h. Muscle tissue was examined using MR imaging (MRI) and histology. An MR-compatible loading ...
متن کاملExperimentally tested computer modeling of stress fractures in rats.
The objective of this study was to develop a finite-element (FE) modeling methodology for studying the etiology of a stress fracture (SF). Several variants of three-dimensional FE models of a rat hindlimb, which differed in length or stiffness of tissues, enabling the analyses of mechanical strains and stress in the tibia, were created. We compared the occurrence of SFs in an animal model to va...
متن کاملMechanical properties of rat middle cerebral arteries with and without myogenic tone.
The inner diameter and wall thickness of rat middle cerebral arteries (MCAs) were measured in vitro in both a pressure-induced, myogenically-active state and a drug-induced, passive state to quantify active and passive mechanical behavior. Elasticity parameters from the literature (stiffness derived from an exponential pressure-diameter relationship, beta, and elasticity in response to an incre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2004